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EFFECT OF STEADY ROLLING ON LONGITUDINAL
AND DIRECTIONAL STABILITY

By William H. Phillips
SUMMARY

The effects of steady rolling on the longitudinsl and dlrectional
stability of alrcraft have been studled theoretlcslly. Simplifying
agsumptlions have been made with regerd to the longitudlnal and lateral
motions of the airplane in order to obtaln a solution which shows the
principal effects of the rolling motion. ‘Rolling has been found: to
cause instability if the directional and longlitudinal stabilities
ere 4ifferent when the rolling frequency exceeds the lower of the
pitching and yawing natursl frequencles of the nonrolling sirplans.

This instability lasts only during the times the airplane 1s rolling and
would not, therefore, affect the normal f£ilight of an airplene. In the
case of alrplanes of short span and high density, carrying most of theilr
woight 1n thelr fuselasges, and flying at high altlitudes, this Instability
might cause dangerocus attitude changes during rapid rolis. If the
directional and longitudinal stabllities are about equal, the instability
due to rolling will not occur.

If the rate of roll exceeds both the pltching and yawing natural
frequencles of the nonrolling alrcreft, the aircraft will be stable.
A continuocusly rolling aircraft wlll be stable in this case even when
the nonrolling alrcraft has a certaln semount of instability ebout
one exils.

Applications of these conclusions to rolling airplanes and missiles
ere discussed.

.

INTRODUCTION

When an airplane rolls about an axis which is not alined with its
longitudingl axis, inertia forces are lntroduced which tend to swing the
fuselage out of line with the fllight path. These forces are ordinarily
neglected. when the usual theory of lateral stabllity of aircraft is used
to calculate the motion of an alrplane 1n a roll. This assumption is
probably Justifiled for the case of most conventlonal airplanes bscause
inertia forces lnvolved are small compared with aerodynamic forces on
the alrplane. Design trends of very high-speed aircraft, however, which
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include short wing spens, fuselages of hlgh density, and flight at high
altitude, all tend to increase the inertia forces due to rolling in
comparison with the serodynamic restoring forces provided by the longi—
tudlnal and directionsl stabilities. It is therefore deslrable to
Investigate the effects of rolling on the longitudinal and directional
gtablilities of these sircraft. The inertia forces due to rolling velocity
are glmilar to those which sre always taken Into account In the study
of spinning, where they have a predominant effect. The effects of
rolling on stablility discussed iIn this report occur only during the
period in which an ailrcreft 1s rolling, and therefore thesy do not—have
any effect on the stablllty of an alrcraft in steady flight+

Some types of research misslles, which were not roll-stabilized and
therefore rolled contlinually in flight, have been employed to Investigate
longitudingl and labteral stability of airplane confilgurations., Further—
more, certaln types of gulded misslles may Intentlonslly roll continually
1n flight. An anelysils would therefore be deslrable to determine the
effects of the rolling motlon on the behavior of these missiles.

The rollling motlon introduces coupling between the longltudinal and
lateral motion of the alrcraft. An exact solutlion of this problem is
very complicated because of the large number of degrees of freedom
involved. In the present report, simplifying assumptions have been made
with regerd to the longitudinel and lateral motions of the alrcraft in
order to obtain a solution which shows the principal effects of the
rolling motion.

SYMBOLS
a, b, ¢, d, & coefficients of quartic
A constant (emplitude ratlo)
b wing span
c wing chord
Cc viscous damping coefficient
cy, ' 11t coefficlent L
Lloves
2
Cy pitching-moment cosfficient [ —
' VeSc
2
D - differential operator (g;%)

e base of natural logarithms
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-bl

/e

X, ¥, Z

R

re R ™

" x -1y
momsnt—of—~inertie parameter [ S——=-

Iz
shift in aerodynamic center or in st:_Lck—fixed. maneuver point
moment of inertia
moment of inertia sbout X—exis
moment of inertia about Y—axis
moment of ilnertla about Z-axis
spring constant
rolling moment; or lift
elleron rolling moment
pitching moment; or Mach number
yawing moment
rolling veloclity about body axls
steady rolling velocity
pitching veloclty ebout body axis
yawing veloclty about body axis
wing area
time
nondimensional time  (pgt)
nondimensional time required to damp to one—hsalf amplitude
true alrgpeed
body exss of alrcraft
angle of attack
angle of sldeslip
angulsr displacement of single—degree—of—freedom systen

fraction of critical damping of single-degree—of-freedom
system
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ge frectlon ofecritical demping in pitch of nonrolling alrcraft

gW fraction of critical damping 1n yaw of nonrolling aircraft

8 angle of pitch relative to flight—path direciion

p alr density

¢ constant (phase angle)

¥ engle of yaw relative to flight—path direction

w actusl frequency of single—degree—of—freedom system

), Wo nondimensional frequencles of motion of rolling aircraft
with respect to body axes =

Wy undamped natural frequency of single—degree—of--freedom system

wg nondimensional undamped natural frequency in pitch of nonrolling
aircraft (ratio of pltching frequency to steady rolling
frequency)

Wy nondimensional undamped natural frequency in yaw of nonrolling
aircraft

1=y-1

L. = 9L L

B aﬁ’ - S;’ . . .

Dot over a symbol indicates derivatlve wilth respect to time.
ANATYSIS

The motion of the aircraft ig studied by means of Euler's equations.
These equations are set up in terms of angular veloclties and acceler—
ations with respect to axbs fixed in the alrcraft.— The perilod and
damping of any motions obtalned as a final result will, therefore, be
thogse which would be measured by instrumente, such as accelerometers,
mounted in the alrcraft during the maneuvers. Euler's equations are
as follows: ’ -

T L = Igd — qr(Ty — Iz) ' (1)

M

Iyd — rp(Iz — Ix) (2)

wesi N = Igr — pa(Ix — Iy) (3)
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It 1s sssumed that the mass of aircraft ls distributed in a plans, so
that Iy = Ix + Iy. Equation (1), relating to the rolling motion, then

becomes

=
0

BL5+rLr+pLP+La

Ix(p + ar)

In the type of motion under consideration, the ailleron rolling
moment Lg 1s offset, on the average, malnly by the damping momsnt pLP

while the quantities B, g, and r in general oscillate about values
close to zero. It 1s assumed in the analysis which follows that the
rolling veloclty 1s comstent and that the effects of the veriations in
sldesllip, pltching veloclty, and yawing veloclty in producing rolling
moments through aerodynamic or inertia effects may be neglected.
Equation (1) » Gherefore, disappears from the anal,ysis and the remsining
equations become linsar. As a result of thils assumption, it is expected
that the enalysis may not apply very closely in cases where the rolling
veloclity ig smsll and the dlhedrsl effect ls lerge hecause a large
dihedral effect would result in appreclable variation of rolling
velocity during a yawlng oscillation. : e

The equations involving linear saccelerations along the X—, Y-,
and Z-axes are cmitted from the present analysis. The equation involving
longitudinal accelerations is omitted because the'motion is assumed to
occur gt constant alrspeed. The equations involving lateral end normsl
accelerations are omltted because, for the purposes of the present
analysis, the longltudinal and directlonal motions of "the alrcraft
which is not rolling are each consldered as single—degree—of—freedom
motlons involving only angular displacemsnts, This assumption does not,
however, exclude the possibility of applylng the analysis to sn aircraft
trimmed at an angle of attack different from zero. Im this case, as the
alrcraft rolls, 1t travels in a hellcal path. The 1ift on the aircraft
balances the centrifugsel force developed by the helicel motion. Both
the 1i1ft and centrifugsl force, however, act through the center of
gravity and do not influence the moments acting on the alrcraft. The
stabllity of angulaer motions of the alrcraft ls therefore determined
by the moment equations (equations- (1) to (3)). The helical motion
simply introduces steady asngles of pltch and yaw sbout which the
disturbed motlons take place.

In the discussion which follows, the terms Toscillation frequency™
and "rolling frequency” are often employed. By “oscillation frequency”
is meant the clrcular frequency of a sinusoldal motion, or 2x times
the frequency in cycles per second. The term "rolling frequency™ is
used interchangeebly with "rolling veloclty™ and is the rate of rotation
1n roll expressed iIn radians per second. In cases where xatlos of these
frequencles are used, the frequencles may, of course, be expressed in
- cycles per second instead of radians per second. .
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In accordence with the asssumptlon that the longitudinal and

directionsl motions of the glrcraft which 1l not rolling are each considered

as single—degree—of—freedom motions, the pltching and yawlng equations
for the nonrolling alrcraft becoms

oM + aMy = Iyl (&)
Iy (5)

¥Ry + rNp

The motions obtained from the sclutlons of these equations would be damped
osclillatlons in pitch and yaw. The values of natural frequency and
damping of these ogcillations mey differ somewhat from the values of
natural frequency and damping obtalned from the usual stebility theory

in which additional degrees of freedom are tmuken intc account. It would
be possible and probebly deslrable, however, to substltute equivalent
values for the restoring and demping moment coefficients of squations (4)
and (5) such that the same frequency and demping for the single—degree—
of—freedom motions would be obtelned as from the more complicated
stabllity theory. An alternate method which accomplishes ithe same result
1s to set up the equations from the outset in terms of the undamped
natursl frequency and demping ratios of the motion of the nonrolling
aircraft. Thls procedure, which follows the method 'and notatlon of
reference 1, may be described briefly by considering a single-degree—of-—
freedom system consisting of & plvobed beam, such as that shown in
flgure 1, moving nnder the influence of a spring restoring force and
viscous damping. The equation of motlon for the sgystem 1s

Iy +C7 +Ky =0

If the followlng substitutions are made,
o - B (or 2 - 5) (6)

c _c
/i or 2fwy, = 'f) (N

ey
]

the equation becomss
¥ + 2lan? + @27 = 0

The quantity w, 1s known as the undemped natural frequency 'and. 1s the

frequency of free oscillations of the system when the vilscous damping is

zero. The quantity _};__ie known ag the damping ratlo and ig the ratio of
the exlsting damping of the system to that required for critical damping.
The free motion ofthe system, which is a decreasling osc tion, is

given by the expression

7 = Ao~ EnC gin (wt — §)
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In this formula, A and ¢ are constants depending on the initial
conditions. The actusl frequency of a free osclllatlon o 1s related
to the undsmped nstural frequency by the formula

- aV/1 - €2

If it 1s desired to calculate from the freguency and damping the
restoring—-moment and damping—moment coefficients for the single—degree—
of-freedom system.which gimulates the alrcraft either in pitch or yaw,

the preceding relations for thls type of system mey be employed.

The substitutlons required to express equations (4) and (5) in
terms of the natural frequenciles and damping ratios of the motions in
pitch and yaw may be made in a similar manner to those of equations (6)
and (7). In order to simplify the notation of the enalysis, the
frequencles of the nonrolling alrcraft will herelnafter be taken as
ratlos of tha oscillation frequencies to. the steady rolling freguency po-

The undsmped natural frequency in pitch is therefore given by the

expression
—Mg ' -
o (o et -3) ®

The damping ratio in pitch 1s glven by the expression

Y :&) 9
2\/__T491—Y or 2fgbgPo v (9)

Anglogous expressions are used for the frequency and damping of the
yawing motions.

~ -

It 1s now desired to express the equations for the roldling alrcraft
in terms of these varisbles, ITnasmuch as the rolling does not influence
the aerocdynamic moments acting due to changes in pitch and yaw, the
external moments are the same as those given in equations (4) and (5).
The piltching snd yawing equations for the rolling aircraft (equations (2)
and (3)) then becoms

M = 6My + qu
= Iy(4d ~ rp)
N = ¥Ry + N, I

= Izt — pa(Ix — Iy) Wa ™ 4
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Dividing these equatlons }by Iy and Iy, respectlvely, glives the . .
formilas l
Mo _ 2
—_ Iy — 6= — =0
q B Ty Ty
x — Iy Ny Ny
r - - - =0
pq( Z Iz "Iz

If the expressions for the undemped natural frequencles and damping ratios
in piltch and yaw (formulas (8) and (9)) are insertsd in these equations,
the pitching and yawlng .equations become .

4 — rp, + 2LgugPod + WgoDood = O

. Ix — T
T~ POQ(—X—E—% + 2lyaypor + WY = 0

Here the rolling veloclty, assumed constant, has been written— py. For
the gmall angles considered in the present analysis, the angle of -

alrcraft (the XZ—plane) of the angle between the flight path and the K Ll./
longitudinal axis of the aircraft. The angle of yaw V¥ 18 taken as . .
the projection on the XY-plene of the angle between the flight path and :
the longitudinsl exis. The axes X, ¥, and Z are taken as the body

axes of the alrcrafi.

Since the restoring forces on the slrcraft ere related to @
and +V, the engular velocities q and r must be expressed in terms -
of these angles and thelr derivatives. It is therefore necessary to .
regolve the anguler velocitlies q &and r, which are measured with
resgpect to the body axes, along the flight—path axes. This procedure
is 1llustreted in figure 2, from which it may be shown that for small
angles of pitch and yaw

. o = q + _'po\lf
1 'lif =X - Poe

'.\_. _ Ay

Hence SR .
qa= é - Pow
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If these substitutions are made, the equations become
. . . . 2
§ — Dot — Dol — 2020 + 2LgePo(d — Do¥) + wg D20 = O

¥+ Dg8 + (P02 — DT + 2tyoypo(¥ + o) + ayPpo?¥ = 0

If ~ Iy
___EE—- has Pbeen set equal to ¥, It is convenlent
to express time nondlimensionslly in téfms of the frequency of the steady

rolling motion. ILet the nondimensionel time +! equal pgt. Then define

where for simpliclty

'PJ

D

I

&

lP-'

1
Po &

© et

In terms of this operator, the equations become
2 25 =
D8 — 2Dy — 6 + 2L gwgDO — 2L gwg¥ + wp 0 = O

D%+D9+¢F-DQF+2§W+ 26 00,8 + a2y = 0

In order to analyze the motion of the rolling ailrcraft, the determinant

of the coefficlente of & and V¥ 1is set equal to zero. This determinant
is ’ *

D2 — 1 + 2tgugD + wg® + . —2D — 2Lgwg
: . L} s - .' =0
D — IF + 2,0y D2+ F + 2L,a,D + ayd
The determinant may be expanded to glve the guartic

aD?

+ DS + D2+ dD+6 =0 - (10)
where

a=1

b= egwmw + 28 q0q i

¢ =~—F + 1+ wwg + wga + eggmeegwuw

d = 2Ly + L gop + Ayaap? + 2Ly
T + wgPan? —wy® + 0P + 2t yey2temg

Q
i



10 NACA TN No. 1627

From the roots of thils quertic, the period and damping of the modes of
motion of the rolling aircraft may be determined. Because of the method
adopted for expressing time nondimenslonelly, the frequenciles of the
motlon thus determined are obbtalned as ratios to the steady rolling
frequency. Routh's discriminsnt for this gquartic is given by the
formula :

bed — d2 — ep2

Plscing this expresslon equal to gero glves the condition for the boundary
between lncreasing and decreasing oscillations of +the system. When the
coefficlents are substituted in thls expression and the operations are
carried out, Routh's discriminant becomes

12 0y 3t g = 4§W‘“¥3§6“’9F + b yay 2t gwg — 8§1y“\y Eomg> + 16§¢ %L'ls wg” :
+ hoy®t o ua\,, gee o F + 1600, g%, + ‘*éwCewe
+ hge 9 - 8§ gF + 16§ 3m¢3§9Q&) - 12§¢mwgam93F
+ hgwww§9w65 + l6§ wwege - 8§W ¢W 2 b
A condition for the boundary between stability and divergence is

obtuined. by setting the coefficient e of the quartic (formula (10))
equal to zero.

(11)

In order to sgimplify the numerical analysis and at the same tims to
show the principal effects of the rolling motion, it 1s helpful to comsider .«
the case where the damping ratios (g, and §, of the longitudinel and t

directiongl oscillations of the nonrolling alrcraftare zero. Thils case
of undamped ogclllations 1s of much practical interest because the
ogclllations of high-density aircraft flyling at high altitudes are
usually poorly damped.

If the damping ratios ge and gw equal Zero, the determinantal
equation for the rolling aircraft becomes

b + cD2 +e =20

aD
where
g =1

-F + 1 + wwa +-a92
—F + wegwwe - wwe % wggF

Q
]

o
Il
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This equation may be solved ex_plicitly as a quadratic in D° as follows:

2 —
D2 g,+u>9 +1—F \/(uﬂ, +<n9 + 1 ) RN +a>¢ %92F+F

(12)

The frequencles of the oscilla:bions of the rolling aircraft are obtalned
from the numericel values of D, the square root of D2 (formula (12)),
when D is Imaginary. There are two frequencles: one designated wq,

obtained with the minus sign before the radical of formula (12), and the
other designated wo, oObtained with the plus sign before the radical.

DISCUSSION OF RESULTS

Case of zero demping of nonrolling sircraft.- The first case
considered 1s that of an aircraft with frequencies wg and wy in pitch
~and yaw when it is not roliing and with zero damping of thesse
oscillations (ge and &y = 0). It will also be assumed that Iy = O,

Iy —-T
or F = —XTE = —1, This case 1s a reasonsble close approximatlion to
meny practical alrcreft and missiles of short span with slender fuselages
in which most of the welght 1s concentrated.

The characterigtlice of the motion of & rolllng alrcraft of this type
are shown in figure 3. ‘ghis Tigure presents the stable and unstable
reglons in a plot of wy asgalinst (D\p- and also ghows contour lines of
the frequencies of the oscillations performed by the rolling aircraft.
This figure brings out the symmetry 1n the effects of g and Ay whlch

would be expected from physicel comsiderations for the case of Ix = 0.

When both the pltching and yawing frequencies of the nonrolling
alrcraft are greater than the steady rolling frequency under conslderation,
the motlon is steble, in the sense that there is no divergence or
increasing osclllation. This condition isg shown by the stable region
in the upper right—hand part of the dlagram where wg > 1 and ay > 1.

In thils reglon, the rolling alrcraft has two modes of oscillation, both
of which are undamped and heve frequencles different from those of the
ogcillations of the nonroliing aircraft. If the pltching frequency of
the nonrolling aircraft ay equals its yawing frequency wy, then one
mode of oscillation of -the rolling alrcraft has a frequency equal to this
frequency plus the rolling freguency and the other mode of oscillation
has a frequency equael to this frequency minus ths rolling freguency. In
general, for wg not equal to wy, omne freguency of the rolling alrcraft

is greater than the higher frequency of the nonrolling alrcraft; and the
other frequency is less than the lower frequency of the monrolling alrcraft.
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When one of the frequencies of the nonrolling alrcraft—equals the
frequency of the steady rolling motion (wg or wy = 1), the aircraft
becomes nsutrally stable in one mode, as shown by the fact that the
frequency of this mode equals zero. This phenomenon may be explained
physically on the basis that the restoring forces acting on the nonrolling
aircreft which produce a certaln osclllatlon frequency are Just offset by
the centrifugal forces which attempt to swing the fuselage out—of lins
with the flight path when the alrcraft rolls with this frequency. This
effect 1s somewhat analogous to a rotating shaft operatlng at its critlcal
speed. In fact, if the pltching and yawlng frequencies of the alrcraft
are both equal to the rolling frequency, the comditions are exactly
similer to those encountered when a shaft having equal stiffnsess in all
directions rotates at its critical spesd. When the frequencies of the _
aircraft in pitch and yaw are different, and only one of these frequenciles
egquals the rolling frequency, the conditions may be shown to be analogous
to those encountered when a sghaft of flattened cross sectlon rotates at
one of lts two criticel speeds. It may be of Interest tv note that the
theory for the behavior of such a shaft is identical with the thsory
developed in this report for the rolling alrcraft.

When one frequency ofthe nonrolling alrcraft is less than the
gteady rolling frequency and the other 1s greater, the rolling aircraft
becomes statlcally unstable in one mode and performs a stralght divergence
as measured by instruments fixed in the aircraft. If both frequencles
of the nonrolling alrcraft are less that the steady rolling frequsncy,
however, the rolling alrcraft 1s steble, as shown by the small stable
reglion 1n the lower left—hand cormexr of figure 3 for wg and

between O and 1. Here agaln there are two modes of undamped oscillation.
In this region, when the values of ay and wy are equal, the stability
is aenalogous to that of a shaft having equal stiffness in all directions
rotating above ite critical speed. When wy and wy both approach zero,

which means that the static longltudlnal and dlrectionsl stebilitles both
approach zero, the two frequencles of—the rolling alrcraft both approach
the rolling frequency. Physically, this condition means that the rolling
aircreft can have ite axls tilted from the flight path end, because of
1ts lack of static stabllity, will continue to roll about this tilted
axis. This rolling motion wlll cause periodic changes in the angles of
attack and yaw with a frequency equal to the rolling frequency. These
periodic changes would be messursed s constant—emplitude pitching and
yewing oscillations by Instruments fixed 1n the aircraft.

A emgll stable reglon exists where the frequency of—one mode of
oscillation of the nonrolling aircraft 1s less than the rolling freguency,
and in the other direction the aircraft has a certain degree ofstatic
ingtabllity. This stabilizing effect of the rolling motlon may best be
vigualized by consildering the motion of the alrcraft with respect to
fixed axes. A fin which provides etabllity in only one direction (say,
yaw) will make the rolling aircrsft stable about-both axes, provided
the rate of roll is fast enough, because the f£in rapid]y turns from one
Plane to ancther. This effect only ococurs for a relatlvely limited
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range of perameters, however, and 1ls shown in figure 3 as the stable
reglion in the range of negative values of a)e and a)q; A negative
value of (Dg » corresponding to an imaginary value of the frequency,
represents an exponentlal divergence defined by the equation

0 = Ao lwgt!

This sams equation, of course, represents a sinusoldal oscillation of
frequcncy g for real values of ag. TFigure 3 was plotted in terms

of a)92 and ‘D\lf rather than Wy and. Wy in order to Include the
imaginary vealues of these frequenciles.

~

In the lower left~hand corner of figure 3 there 1s a region of
increasing oscillations as measured by Instruments fixed in the body.
In thils reglon, where the nonrolling alrcraft has a large amount of
gtatic instability, the longlitudinal axis of the rolling aircraft
performs a maneuver approximating stralght divergence with respect
to fixed axes; but becauss of the rolling, this motion shows up as an
increasing osclllatlon with respect to the body axes.

The effect of distributing welght along the wings as well as along
the fuselage on ths behavior of the rolling ailrcraft, again with zero
demping in pitch and yaw (fg = Ly = 0), 1is shown in figures 4 and 5.
Figure 4 presents the con'bou:c' lines of the frequencies of the rolling
aircraft on a plot of cne against a)\yz for F = -0.666. This velue
of F corresponds to the case where the moment of inertia sbout the
X-axls equals 0.2 times the moment of inertia sbout the Y—axis. The
results indlcated by this figure are similar to those for the case where
all the welght 1s located in the fuselage. A somewhat smaller value of
the directional stebility is required, however, to avold divergence in
yaw of the rolling sircraft. Figure 5 is a similsr plot for F = O.
This value of F corresponds to the case where the momsnt of Iinertia
about the X—exls equals the moment of lnertia about the Y—axis. In
this cagse a rolling motion produces no inertis yawling moment on the
yawed alrcraft. With large stabllity in pitch, the yawing freguency of
the rolling aircraft would therefore be expected to he the same as that
of the nonrolling aircraft. The results of figure 5 indicate that the
frequency wo, which represents malnly a yawlng motion with large

stablility in pltch, approgches asymptotically the yawlng frequency wy
as g becomes lgrge. Furthermore, the divergence boundary in yaw,

which occurs at wy = 0 for the nonrolling alrcraft, is unchanged by
the rolling motlon.

The speclal case where dg = @y and Iy = O may be analyzed more
simply by use of the equation of motion of the body with respsct to axes
fixed in space. This analysis allows a clearer physical interpretation
of the motion of the body and serves as a check on the results obtained
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previougly by mesns of Buler's equations. Thls speclal case corresponds
to conditions existing alomg & 452 line through the origin in figure 3.
The motlon of the system with respect ta axes £ixed I1n. space ls derived
in & followlng section of this paper, but first the resulis already
obtalned. by means of Euler's equations are stated. It mey be seen

from figure 3 or derived from formuls(lZ2) that the frequencies of the
rolling aircraft wlth respect to body axes for this case are given

by the formilas

&
+
-

@)
wy = |@p - 1

Here, @ eand @y are nondimensional fréq._uen_cj._es expressed as ratlos

to the steady rolling frequsmcy. The pitching frequency wg of the
nonrolling aircreft is egusl’ to. the yawlng frequency wy, and elther
gymhol might he ussd. The member on the right—hand side of the equation
for wy Indicates the abaciute value of the quantity wg — 1. If these
formilas ere put in terms of-actual freduencles, rather than nondimensionsl
frequenclss, they became

- —

D1 Ps = WPy + Po

WPy = lwapo_ — Dy

Hence, the frequencies of the rolling alrcraft :re glven by the sum and
by the ebsolute value of tha dlfference between the frequency of the
nonrolling alrcraft and the rolling frequency.

The solution for the motion bamed on the equations of motion with
respect to fixed axes 1s now considered., The dynamic system is shown
in figure 6(a). The restoring forces provided by the fins will us
be the same with respect—to fixed axes as with respect to axes roll
with the body. The forces would be exactly the same, for example, 1f
the body had e fin in the form of a circular cylinder. The assumption
that the forces are the same would be a close approximetion to the
conditions existing with a conventionsel four—fin tall. Because all the
welght ls locatwd slong the T—axis, any rolling motlion of the body sbout
the X—exis Has no effect whatever an the motlon of the X~exls of the body
with respect to fixed gpace. The motion of the X—exis of the bedy, '
therefore, 1ls composed of vertical and horizontal oscillations of
frequency agP,, exactly as in the case of the rponrolling body. The

most general motion of the axis is a combination of these two components
with erbitrary amplitudes and. phagse difference. This cambinatiom in

,
.-
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general causes the axls to swing so that any point on the exis traces an
elliptical path, as shown in figure 6(a). In order to see how this
result corresponds to that obtained previonsly for the mobtion with
respect to body axes, the frequencies measured with respect to fixed

axes must be converted to frequencies measured with respect to axes
rolling with the body. This conversion is a kinemstlc transformation,
with no dynsmics involved. Ordiunerily, the motion of the axis would

be resolved inte vertical and horlzontal components as mentloned previously.
If the body rolls when the axis is undergoing a vertical or horizomtal
osclllgtion, however, the resulting oscillations with respect to body
axes wlll not have constant amplitude. In order to obtaln results
equlvalent to those previously described, 1t ls necessary tc break the
motlon of the axls Inbtoc componerts which lead to constamt—emplitude
oscillations with respect to body axes. Two such motions are possible:
one a clockwlse and the other a counterclockwise rotatlon of a polot on
the rear of the body. This polnt moves in a clrcular path with

frequency WgD,. These motlons are shown in figure 6(b). These circular

motions of the body wilth frequency ugp, are possible motions because

they masy be obtalned by combining vertical and horizontal oscillations
of equal emplitude with a phase difference of 90°. Any possible motion
of the alrcraft msy be produced by combining these two circuler motions
with the correct phaese difference and amplitude. Xxamples of possible
combinations are given in figures 6(c) and 6(d). TFigure 6(d) shows that
the e]'_'l.ipticalb path, which ls the most general type of motlon, may be
produced by this combination.

The frequencies of the rolling alrcraft as seen from body axes may
be derived by considering the angle—of—ettack changes as the body rolls
when lts axls 1s performing one of the two circular motlomns. The case
where the axls-revolves ln a counterclockwise direction with frequency wgpo
while the body rolls clockwilse with a frequency p, corresponds to the
formule, .

M Pq = ©gPs + Po

The case where the axls revolves ln a clockwise direction wlth
frequency agPe while the body rolis clockwlse with a frequency pg
corresponds to the formula

WP, = |WgPy — o)

The results obtalned by the analysis based on fixed axes may therefore
be converted to body axes to give the same result as that obtalned
directly from the analysis based on body axes.
~

A casgse in which the two solutions mlght be considered tc dlsagree
is one in which the rolling frequency equals the pitching (end yawing)
frequencies. The results plotted in figure 3 show a condition of neutral
stabllity to exiet at this point, whereas the stability of the axis of
the body in the enslysis based on fixed axes was stated to be independent
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of the rate of roll. It should be noted, however, that any slight out—
of—trim pitching moment applisd to the rolling aircraft at this point
would produce a verticel and horizontal moment varying sinusoidally with
time at the natural frequency of the axis. A conditlon ofresonance
would therefore exist and the vertical and horizontal amplitudes of

the undamped sgystem would increase Indefinitely. In the analysls based
on body axes, thilg same ocut—of—trim piltching moment applied to the
neutrally stable system would cause the angle of pltch to increase
indefinitely. The two methods of anslysls, therefore, lead to the

game result,

If under the conditions where the rate of roll equals the pltching

(and yawlng) frequencies, the axis of the body is displaced in pltch,
then a yewlng veloclty wlll be introduced with respect to body axes.

Any demping forces proportional to yawlng veloclty—would extract-ensrgy
from the system end prevent the amplitude from building up. The demping
Is therefore expscted to Increase the stabllity of the system, at least
under conditions where the pltching and yawing frequencies are close to
the rolling frequency. The effects of damping are now consldered on the
basgis of the theory.

Case of dsmped ogcillatlions of nonrolling aircraft.— The rate of
decrease of amplitude of the oscillationg of the nonrolling sircraft is
determined by the damping ratio {. The fractlion of the original
amplitude to which the osclllation decays in ope cycle 1s shown as a
function of ¢ 1In figure 7. For ¢ = 0.2, +the oscillation damps
to 0.28 of 1ts original amplitude in one cycle. Thils amount of damping
is greater than that usuelly found for either the pliching or yawing
oscillation of an alrcraft of high density and 1s uged to give an
extrems eXample of the effect of daniplng on the stebllity of the
rolling alrcraft:

The dlvergence boundery for the rolling alrcraft 1s determined by
setting the coefficient e of the quartic (equation (10)) equal to zero.
The divergence boundary for the case ;9 = gw = 0.2 and Iy =0 18 given

on & plot of wB? agelinst mwg in figure 8. This filgure also corresponds
to any values of {5 and Qw satisfying the relatlon {gly = 0.0k

because these quantities enter Ilnto the coefficient e only as a product.
By comparing the boundaries of figure 8 with those of figure 3, it may be
seen that the addition of damping has broadened the stable reglon in the
nelghborhood of the point awy = 1, ay =1, that is, where the fregquencles
in pitch and yaw are close to the rolling frequency. In other parts of

the figure, the boundaries are but little changed. The boundsry between
increasing and decreasing oscillatlons 1g not shown in figurs 8.

In practice, when the frequency of the nonrolling esircraft-is
changed, the -damping ratio also changes. For exsmple, 1f the frequency
in pitch is changed by varying the center—of—gravity location, the damping
retio increases es the slrcraft approaches neutrel stablility becauss the
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damping moment provided by the tall remains nearly constant while the
restoring moment decreases to zero. The condltlon encountered in
practlice 1s more neerly represented by the condition that gea)e equals
a constant. This condition, for a single-degree—of—freadom system, is
fulfilled when the viscous damping device remains the same ag the spring
restoring force is varled. The divergence boundariss for the case
fgg = 0.2 and § = 0.2 are plotted in figure 9. The results are
similar to those of figure 8 although, of course, the damping coefficient
is less at large values of the nondimensionsl frequencies and greater at
frequencies approaching zero. In figure 8, the asctual demping moment
decreases to zero when the corresponding frequency equals zero, and for
this reason the boundaeries cross the same polnt as those of figure 3
when wg =0 or oy =

The boundary between decreasing and lncresasing oscillations for the
cage of damped motlon 1s obtalned by setting Routh!s discriminant equal
to zero. This boundsry is also plotted iIn figure 9 for the case
Cgg = 0.2 and C\lf"‘ﬂf = 0.2, This boundery is almost coincident with
the boundery between constant—emplitude oscillations and Iincreasing
osclllations glven in figure 3. Thus, the boundary between constant-
amplitude and increasing oscillations, which camnot be strictly termed
e stability boundary, goes over into the Routh boundary as soon as any
damping is present.

The effect of damping on the characteristics of the motion for
representative combinations of frequency and damping has been studied
by determining the roots of the stablilliy quartlcs obtalned from
formula (10). The results are presented in :E‘igure 10 which shows the
roots on enlarged plots of cue against ‘D’lf similar to those previously
given in figures 3 and 9. Three condlitions have been investlgated,
nemely, zero demping (fguwg = {yoy = 0), equal demping about each
axls (Lqug = QW = 0.2), and zero demping sbout one axls combined
with demping about the other axis (fgwg = 0 and {ywy = 0.2 or
vice versa). The resl roots represent convergences and divergences
whereas conjugate complex roots represent oscillations. Real roots or
real parts of complex roots determine the nondimensional time to
decrease to one-helf amplitude, if they are negative, or to double
amplitude, 1f they are positive, in accordance with the formula

. 0.693
1/2.7 Roat part of complex root

The imaginsry parts of complex roots give the nondimensional frequencles
directly. Figure 10(a), which shows the results with zero demping, is
gimply a repetition of what has previously been presented in figure 3;
but the roots are given to facilitate comparison with the cases of dampéd
motlon. Thls flgure shows that constant amplitude osclllations exist
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within the stabillty boundary end that a divergencé 1s present outsilde
these bounderies in the reglon shown.

Figure 10(b) shows the results when both modes of oscillation of
the nonroliing sircrafi heve equal demping and corresponds to the case
for which dlvergence boundaries are shown In flgure 9. It may be seen
that in most of the stable region two modes ofosclllation occur, both
of which damp to one—hglf amplitude in the sams time as the damped
oscillations of the nonrolling aircraft. The perlods of the oscilllations
are very nesrly equal to those existing with zero damping. As the
divergence boundary 1ls approached very closely, however, one mode of
osclillation chsnges into a palr of convergences. One of these convergences
becomes weaker upon closer approech to the boundary untll at the boundary
it 1s transformed 1lnto a dlvergence. For the one polnt investigated, the
rate of divergence ls slower then +that for the case with zero demping.
The dampling changes the reasl root, which determines rate of divergence,
by about the same amount as it changes the real part of the complex root,
which determines the damping of the oscillation. It may be concluded
that;wlithin the region of comstant=empliiude oscillations of the
undemped motlon, damplng is very effective in providing stability and
causes the motlon to disappear 1n the sames time as In the case of the
nonrolling aircraft. Outslde the divergence boundary for the damped
motion demping reduces the rate of divergence, but for practical values
of damping this reductlion would not be important.

Figure 10(c) presents the results for the case when one mode of
ogcillations of the nonrolling sircraft ls well demped and the other
mode has zero damping. Although thig conditlon 1s not likely to exlst -
in preactice, 1t represents an extreme example of this insquality. This
example 1s Iintended to bring out the differsences between this case and
the case of equal damping of the two modes. The divergence boundariles
in this case are .the same as those for zero damping (fig. 10(a)).
Physically, thig fact-means that when the aircraft has a mode of
ogclllation of—the same frequency. as the rolling motion, it may be
oriented in such a way that no sngular velocilty occurs about -the axis
around which damping forces exist. Thusg, the demping can have no effect
on this mode. In the region where oscillations exist, the demping is
one-half as grest as in the case of equal damping. Thils result means
that when the alrplane is rolling the damping ls effective about half
the time. The rate of divergence ln the unstable reglon is Intermedliate
between that for the case wlth zero damping end that with equal demping
about the two axes. '

APPLICATION OF RESULTS

Full—scale alrplanes.— The previous analysis indlicates that
instability may be caused by very rapid rates of roll in small heavily
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loaded alrplanss carrying a large proportion of their weight in their
fuselages and flyling at high altitudes. This instebility lasts only as
long as the alrplane rolls and would not, therefore, cause difficulty

Jdn normal flight. The instabllity in a roll might, however, cause an
alrplane to reach dangerous attitudes if the dilvergence were sufficiently
rapid.

The rate of roll of an alrplane with a given alleron deflection and
true alrspeed remains epproximately constant as the altltude 1s Increased,
but the periods of the longltudinal and directional oscillations increase
because of the reduced indlcated airspeed. The rolling frequency may
posglibly exceed one or the other osclllation frequencies, with the result
that 1lnstability of the type dlscussed would be encountered. For example,
the rolling frequency and the frequencies of the pltching and yawing
oscillations of an existing transonlc research slrplans are plotted as
a function of altitude in figuwre 11. This alrplane has a large amount
of directlonal stebility, so that the yawing oscillatlion has a hilgher
. frequency than the pitching ocscillatlion. With the assumed value
of Pb/2V of 0.05 and Mach number of 0.8, the rolling frequency
exceeds the piltching frequency at an altitude of about 28,000 feet when

the static margin (%) is 0.05, or at 46,000 feet when the static
L
M

margin is 0,10, The alrplane would perform a longltudinal divergence in
rolls 'of thils rate at higher altitudes. Higher rates of roll would, of
course, cause instebllity at lower altitudes.

The ingtabllity would not be present if the perlods of the piltching
and yawing osclllations were equal. It would appesar advisable to provide
approximately equal values of longitudinal and directional stability on
alrplanes that are lintended to roll rapidiy. Because the longitudinal
stabllity lnevitably varles with changes in center—of—gravity position,
however, this conditlon may not be easy to realize in praoctice. It is,
therefore, desireble to provide falrly large values of both longitudinal
and directional stebility on alrplanes wilth high rates of roll in order
to avold the Instability due to rolling.

The rgtes of divergence Ffor the unstable cases lnvestigated are
generally not large enough to cause unduly large changes in attitude of
the alrplane in rolling to angles of bank up to 90°, but they masy cause
serious attitude changes In a complete 360° roll. Large yawing moments
dus to rolling, and pitching moments due to sideslip, are usually present
which cause dlsplacements in pitch and yaw during the early stages of a
roll. These displacements would Iincrease rapidly if instabllity were
rresent. Consideration of these dlsturbing moments alone leads to the
conclusion thet relatively large values of directional and longltudinal
stability are desirgble on alrplanses intended to roll rapidly.
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The effect of rolling on the longitudinal staebility in the case when
the dlrectlonel stabllity is very large may be considered ag a forward
shift in eerodynemic center or in the asticlk—Llxed masneuver point.— This
shift 18 glven as & fraction of the chord by the expression

) BII@%)2

CL ﬁc‘ba .

On a glven airplane the shift in meneuver polint is thus proportional

to (pb/EV) and varles inversely as the air density. Thls same formula
epplies epproximstely for practical values of directional stability,
provided that the longitudinsl staebility le small compared with the
directional stability. For the alrplane used as an example in figure 11,
the shift in maneuver point with a value of pb/2V of 0.05 at sea level
is 4,6 percent chord and at 50,000, feet altitude is 31 percent chord.

Miggiles.— Some migsiles differ from full—scale alrplanes Iin having
much emsller wilng spen, higher density, and a greaster proportion of
weight in the fuselage. The rolling frequency of these misgileg may
therefore be larger Iin comparison with the frequencles of their longitudinal
and. directlonal osciilations.

Some research missiles, which were not roll-stebillized, have been
ugsed to Investlgate the longltudinal and dlrectlonal stabillity of
alrplane configuratlions. The preceding analysis shows that the frequencies
of oscillations recorded by instruments Iin the missile camnot be used
directly toc compute the longltudinal asnd directional staebility unless
the rolling frequency l1s very small in comparison with these frequenciles.
If the rate of Toll were recorded and a sufficiently long record of the
motlon were obtalned under steady conditions to enable determingation of
the frequencies of both modes of oscillation, 1t would be theorstically
possible by use of cherts such as figures 3 to 5 to compute the
frequencles of the nonrolling alrcraft. Thege steady conditlons are
rarsly obtalned in practice, however. Devices to I1imit the rate of roll
or to roll—stabilize such research migslles therefore should be used
unless thelr Inherent rater of roll are very small.

The preceding enalysis may be used to Indicate the deslgn features
requlred for stabllity of mlssiles that ere intended to roll continually
in flight. If such miselles roll at a smaller frequency than the
freguencles of their lomgitudinsl and directional oscillatlons, then
equal stablility in both planes is desirable, as it was in the case of the
full-scale airplane. If the rolling frequency 1ls greater than that of
the more repid oscillation, as 1s usually the case with such missiles,
then & fin providing stability in only one plane ig adequate to
gtabllize the missile. The instgbility in the other direction should
not be so great ag to place the system in the unstable region of figure 3,
however.

The results of figure 3 indicate that a body which is unstable in
both planes cannot be stebilized by spinning, & result which eppears to
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disagree with the normsl practlce of gtabllizing projectiles by spinning.
The stabilization of proJjectiles by spinning cannot be studlied from the
numerical results presented 1n figure 3 because these results apply to
the case where the moment of inertila about the longltudinal axis Iy

ig zero. Ths stabllity of spinning projectlles depends on the value
of Ix. The preceding analysils mey readlly be extended to lnclude the

case of an axially symmetrical body with a finite value of Iyx. In this

case, 1t may be shown that the axis of the raepidly spinning body will
perform constant—emplitude oscillatlons in the gbsence of dampling forces
whether or not it is stable in pltch and yaw. If the body is unstable,
however, demping forces in plich and yaw will produce an increesing .
oscillletion; whereas, If the body is steble, damping forces will produce
a decreesling oscillation. Inssmuch as most artlllery projectiles are
unstable in pitch and yaw, they cannot be called truly stable 1n flight.
The rate of divergence of the osclllation 1s smell enough, however, to
avold appreclable Increase in amplitude during the tims of flight.

CONCLUSIORS

An anslysis has been made to show the effects of rolling on the
gtabllity of aircraft. In thls analysis, it was assumed that the
longitudinal and dlrectional motions involved oniy pltching and yawlng,
respectively, and that the rolling velocliy was constant. The neglect
of the additionsl degrees of freedom gnd of the posslble effect of
sldesllip on the rolling veloclty may lead to some inaccuracy, particularly
in cases where the rolling veloclity is small and the dihedral effect,
large. The analysls ls expected to apply closely, however, in the
cases of greatest interest where the alrcraft has high density and is
rolling rapidly. From the results presented, the comblnations of
directional and longlitudinal stability that produce stable motlon with
di1fferent rates of roll may be calculated and the effect of rolling on
the characteristics of the motion in pitch and yaw may be found. The
analysis leads to the following conclusions:

1. Rolling of an alrplane may lntroduce insertla forces that tend
to swing the fuselage out of line with the flight path. These forces
tend to produce (1) longitudinal instability if the longitudinal
stabllity of the nonrolling alrplane is small compared with its
directional stebility amd (2) directional instability if the directional
stablility of the nonrolling airplane 1ls small compared with 1ts
longitudinal stability. Thie tendency toward lnstaebllity lasts only
as long as the airplanse rolls and, therefore, would not affect normsl
flying of an airplane. The destabllizing effect may be appreclable
on alrplanes of short span and high density, carrylng most of thelr
welght 1n thelr fuselages, and Tflying at hlgh altitudss. On such
alrplanes, dangerous attitudes might be reached Iin rapid rolls, particularly
if the rolling continued through 360°, Instablility occurs when the rolling
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frequency exceeds the lower of the pitchling and yawing natural frequencies.
This type of instaebility does not occur 1f-the stabllities about the two
axes are about squael though rolling reduces the stability in this cese.

= - . — :\M -

2. The pitching and yawlng osclllation frequencies as recorded by
Ingtruments in an alrcraft are changed when the alrcraft is rolllng. !
These frequencles measured in a rolling alrcraft cannot, therefore, be!
used dlrectly to calculates the longltudinal and directional stability 5
.of the nonrolling alrcraft. e

3. Missglles rolling rapldly mey be stabllized by a fin in only one
plene, provided that-the frequency of the rolling motion 1s greater than
the natural frequency of the oscillation of the nonrolling milsslle in
the plane in which the fin produces stabllizing moments and provided
that the Instabllity In the other plane 1is not too great.

Langley Memorial Aeronautical Laborsatory
Netionsl Advisory Committee for Aeronautlcse
Langley Field, Va., March 25, 1948

REFERENCE

l. Draper, C. S., and Schliestett, G. V.: General Princliples of
Instrument Anelysis. Instruments, vol. 12, no. 5, May 1939,
pp. 137-1Lk2,



L29T °*ON NI VOVN

Bar, moment of inertia, I

Viscous damping moment

~HACA”

Figure 1.~ Sketch of single-degree-of-freedom system.
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Top view

Side view

Figure 2.-

Relations between angles of pitch and yaw and angular

velocities about body axes and flight-path axes. (Views
perpendicular to flight path.)
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A Section A-4

(a) Symmetrical rolling body stabllized by fins, with weight distributed
along the longitudinal axis, Sectional vlew 1llustrates general
motion of a point on the exis.

P P
° Tail fins on body o
”~ -~
’ .
( l
—_— — Po
|
. rd
- Flight-path axis N ——

(b) Sectional views through tail fins of symmetrical rolling body, showing
the two types of motion which lead to constant emplitude yawlng and

pltching oscillations with respect to body axes.
~_NACA, ’_,T—

Figure 6.~ Motion of a symmetrical rolling body stabilized by fins, with
weight distributed along the longitudinal axis.
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(e) Generation of motion on a tilted straight lime
by combination of two circulaer motions with the same
frequency and amplitode, opposite direction end arbi-
trary phase difference, Circle B is shown displaced
from circle A for clarity,

LS9T "ON NI VOVH

(d) Generation of motion on an ellipse with
tilted axis by combination of two circnlar
notions with the same frequency, unequal
amplitude, opposite direction,and arbitrary

phase difference.

Figure 6.~ Concluded,

62



30

NACA TN No. 1627

1.0
A
[ 3] .
o8 \
[
B8 \
g4 \
(2]
B 6
1] )
i N
oo g
LE \
&
Q
ok
It N
43 o
L )
B
= \
3 R \\
\\¥‘j
8] | r\\
el o 3 ok .5
Damping ratio, { NACA.
Figure 7.- Fraction of original amplitude to which oscillation decays

in one cycle as a function of the damping ratio ¢.




NACA TN No. 1627 31

<A

b A AN AL S A A SR A S AR M AR NS NN RN NN S RNy

12
N
N
N
N
N
N
N
10 N
) N
N
B
N
N
N
e * N
N
h
N
3
N
N
N
N
6 3
N
h
N
N
N
I
I+
o N
\
E i b N
N
s
Ve
» N
N
\

Pt
4
A
4
4
1
4
4
1
7
l
.
4
9
H
‘

o
yy) IN

VS FIWY. V)

-2

-l -2 0 2 L 6 8 10 12

Cu? "NACA "

Figure 8.- Divergence boundaries on a plot of mez against w\yz for

the case IX =0, ¢ = by = 0.2. Stable side of boundaries

a indicated by cross-hatching. Comparison with figure 3 shows effect
of increased damping.



32 . NACA TN No. 1627

12
"
o
2
“
A
d
.
10 4
L’
V.,
7
“
“
8 .
Region of one L
divergence 7 Stable region
4
A
6 1
-
4
/
l
4
E 4
2 J‘
Reglon of two
dlvergences 4 L
2 7 VYD VDI DIV IIIIS VIVIN VNP9 IV IID V)P I I
o]
%
‘g Reglon of one
Reglon of divergence
-2 increasing
osclllations
-l
| Region of two
_J divergences
—l

=i -2 0 2 b 6 8 10 12

?

Figure 9.- Stability boundaries on a plot of “’92 against w\yz for the

case IX =0, €% = 0.2, and ;Www = 0.2. Stable side of

boundaries indicated by cross-hatching.



~3

NACA TN No. 1627

3 S
o~
R
N
N
N Oft.51, +2.51
N
N
2
N
3
[~
N
b
N
o~
N
X0, 0, £21 0, 0, £2.20i
P 7 A AN SN
SANNNNNNNNANNNNNY ANRN RN R NS NN ~
N
3
J
S
3
3
o Af-ti, o, 0 E;O, 0, #1.731 é,:t.524, +2,121
3
N
™~
~J
N
™~
R
N
N
-1 -
-1 0 1 2 3
%2

(8) teuy = tyuy = O.

Figure 10.- Roots of the stability equation for varlous combinations
of frequency and damping. IX = Q.
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Figure 10.-

(b) foe = C*"’*= 0.2.

Continued.
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w*z W
(€) 8guy = O, g*w* = 0.2 or vice versa.

Concluded.
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Figure 11.- Yawing, pitching, and rolling frequencies as a function of

pb

altitude for an existing transonic research airplane. o7 = 0.05;

M = 0.8.



